在针对颗粒性材料的研究上,会议上好多人纷纷发表看法,也提出了研究的难点和问题。 当把内容集中在一起,就发现解决的问题非常多。 王浩倒是没有在意。 会议会把一些重要的问题记录下来,有一些很不错的建议也会记录下来,后续会再研究讨论。 但是,大多数的建议并没什么意义。 在场的材料学者都是实验室工作,是研究如何去制备新材料,而不是做材料制造工作的,也没有纳微材料或者其他相关方向的学者,相对来说,就有些不专业了。 不过,在研究出颗粒式材料制造方法前,他们还是可以进行简单的实验,来验证颗粒性材料是否能提升反重力强度。 现在无法做到制造精细的颗粒材料,但可以使用‘不精细的手段’来做实验进行验证。 何毅就建议道,“我们可以先制造一厘米的颗粒,然后把它们合在一起试试效果。” “如果这个方法是有效的,就可以通过实验结果得到验证。” 这个说法得到了支持。 想制造精度达到微米级别的颗粒状材料,技术难度确实是非常高的,短时间根本不可能做到。 如果只是制造精度为厘米级别的颗粒,再把颗粒通过某些方法固定在一起,相对就要容易太多了。 当然,效果也肯定差很多。 等到了第二天的时候,王浩再次召集了核心研究人员,针对FCW-031材料的颗粒形态进行研究。 FCW-031,是新研究出的超导材料,临界温度为139K,可以在200K左右,激发出0.93(7%)的场力强度。 他们并不是要把颗粒精细到某种程度,只是研究一种大致的形状,来让其激发的反重力特性更多处在同一方向。 FCW-031经过了反重力特性实验,有了实验底层材料布局的支持,很快粗略的颗粒化形态有了具体方案。 那是一种不规则的十三面体形态。 其中一个最大的面向外呈现半圆形凸起,大面正对方向的四个小面则是向内半圆形凹陷。 “这个形态和材料布局相似,可以让FCW-031内部半拓扑结构激发的反重力特性更多处在同一方向。” “从理论上来说,圆形凸起正对的方向会集中场力,我们可以以此配合整体的材料布局,来激发出更强的反重力场强度。” 王浩总结说道。 在确定了FCW-031材料一厘米颗粒的形态方案后,依旧有个难点没有确定下来,就是如何让一个个颗粒组成整体的材料。 每一个颗粒都是不规则的十三面体,再有序的排列也不可能形成一个整体。 因为颗粒必须要同一方向,只是贴合在一起,就肯定存在大量的缝隙,近而影响到材料的导电性能。 当电流载量变低,激发反重力场的强度也会变低。 最终,王浩还是让所有人都回去慢慢思考,再提交一份想法报告出来,他要做的就是在所有的方案中,找出最适合的那一个,又或者集中几个方案来出一个新的方案。 这是最快捷有效的方法。 …… 五天后。 有关颗粒性材料的讨论会再次召开。 参会的人都拿出了一套方案,并对自己的方案进行说明,多数人拿出的方案都没什么意义,能轻易找出一大堆问题。 其中几份有点价值的,也都是会议上讨论过的内容。 王浩连续听了一个多小时,发现根本没听到什么新颖的东西,他考虑着是不是让夏国斌参会? 夏国斌是纳微材料专家,也许就能提出好的建议。 “夏教授倒是也可以……” “要么,等上面派其他的纳微材料专家过来?申请还没有打,还不知道什么时候……” “或者,再找其他人讨论一下?” 当王浩思考着的时候,已经到了下一个研究员做报告,站起来的是个非常年轻的研究员,年纪只有二十八岁。 他的名字是应展明,是跟着材料专家周晖一起进入研究组的。 应展明是国-防大学材料专业的优秀博士毕业生,和周晖一起加入研究组,也是被上级看好进行重点培养了。 他的年纪小,资历什么的不用多说。 会议上基本没有话语权。 现在是让所有人依次作报告,也轮到了坐在角落里的应展明,他还是第一次在会议上开口,表现明显有些紧张。 他抬头看了一眼王浩,又马上低下了头。